
E-Mail karger@karger.com

 Review 

 Neuropsychobiology 2013;68:129–138 
 DOI: 10.1159/000353269 

 Translational Findings on Brain-Derived 
Neurotrophic Factor and Anxiety: Contributions 
from Basic Research to Clinical Practice 

 Anna Claudia Domingos da Silveira da Luz    a, c     Gisele Pereira Dias    a–c, e     
Mário Cesar do Nascimento Bevilaqua    a, c, d     Graham Cocks    e     
Patricia Franca Gardino    b     Sandrine Thuret    e     Antonio Egidio Nardi    a, c   

  a    Laboratory of Panic and Respiration, Institute of Psychiatry, and  b    Laboratory of Neurobiology of the Retina, 
Program of Neurobiology, Institute of Biophysics, Universidade Federal do Rio de Janeiro,  c    INCT Translational 
Medicine (CNPq), and  d    Health and Environment School, Universidade Castelo Branco,  Rio de Janeiro , Brazil; 
 e    Department of Neuroscience, Institute of Psychiatry, King’s College London,  London , UK
 

and physiological changes related to the BDNF polymor-
phism. In animal studies, it has been shown that a significant 
decrease in regulated secretion from both BDNF Val/Met  and 
BDNF Met/Met  neurons represented a significant decrease in 
available BDNF.  Conclusion:  These studies suggest that de-
veloping pharmacological strategies facilitating the release 
of BDNF from synapses or prolongation of the half-life of se-
creted BDNF may improve the therapeutic responses of hu-
mans expressing the BDNF polymorphism. 

 Copyright © 2013 S. Karger AG, Basel 

 Anxiety Disorders and BDNF  

 Anxiety is a mental state that is evoked in anticipation 
of a potential or imminent threat. Feeling anxiety is usu-
ally part of the human experience, but excessive or inap-
propriate anxiety can lead to pathological states. Anxiety 
is accompanied by behavioral and physiological respons-
es, including avoidance, vigilance and arousal, which are 
used to protect the individual from danger. These anxi-
ety-related responses have been observed in humans and 
other animals, and are part of a universal mechanism of 
adaptation to adverse conditions  [1] .
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 Abstract 
  Background/Aims:  Anxious responses are evolutionarily 
adaptive, but excessive fear can become disabling and lead 
to anxiety disorders. Translational models of anxiety might 
be useful sources for understanding the neurobiology of fear 
and anxiety and can contribute to future proposals of thera-
peutic intervention for the disorders studied. Brain-derived 
neurotrophic factor (BDNF), which is known for its impor-
tance on neuroplasticity and contextual memory, has 
emerged as a relevant element for emotional memory. Re-
cent studies show that the Val 66 Met BDNF polymorphism 
correlates with various psychiatric disorders, including anxi-
ety, but there are several differences between experimental 
and clinical studies.  Methods:  In this work, we review the 
literature focused on the BDNF Val 66 Met polymorphism and 
anxiety, and discuss biological findings from animal models 
to clinical studies.  Results:  As occurs with other psychiatric 
disorders, anxiety correlates with anatomical, behavioral 
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  Nonpathological anxiety can be divided into two cate-
gories: the anxiety state, that would be an immediate or 
acute response to threat, and the anxiety trait, a more per-
manent feature that reflects an individual’s tendency to 
exhibit increased anxiety responses over time. In its path-
ological form, anxiety can seriously interfere in daily life 
and can be classified into six syndromes that were de-
scribed in the Diagnostic and Statistical Manual of the 
American Psychiatric Association (DSM-IV-R)  [2] : gen-
eralized anxiety disorder, social phobia, specific phobia, 
panic disorder, posttraumatic stress disorder and obses-
sive-compulsive disorder. Although they are classified 
into six different syndromes, all of them have certain phys-
iological characteristics and behaviors in common  [1] .

  The susceptibility to psychiatric disorders such as 
mood disorders and anxiety disorders can be determined 
early in life. Mechanisms of early development can lead 
the organism to present a lifelong tendency to express 
anxiety in response to threatening stimuli. As the mecha-
nisms of development are under both genetic and envi-
ronmental control, studies in monkeys and rodents sup-
port the important role of gene-environment interactions 
in the etiology of anxiety  [3] . Indeed, genetic variations in 
the promoter of the serotonin transporter gene  [4] , 
changes in the expression of the serotonin type 1B recep-
tor  [5]  or a decrease in hippocampal volume  [6]  have been 
related to individuals more likely predisposed to develop 
anxiety disorders and depression when exposed to trau-
matic experiences. 

  Environmental effects during development are well il-
lustrated in animals suffering from trauma in their early 
development, such as maternal separation  [7]  or malnu-
trition  [8] , thus having a tendency to develop anxiety dis-
orders and presenting physiological changes more easily. 
A plausible explanation for this is that the hippocampus 
is more susceptible to adverse influences during the early 
stages of development. 

  Moreover, it was demonstrated that epigenetic chang-
es may occur as a result of these insults, leading to a de-
crease in the synthesis of serotonin in the brain and in-
creasing the susceptibility to anxiety  [9] . Studies show 
that animals that are positively encouraged in the early 
postnatal life are less prone to anxiety and present lower 
levels of glucocorticoid receptors and increased levels of 
brain-derived neurotrophic factor (BDNF), acetylcholin-
esterase and synaptic markers in the cortex and hippo-
campus  [10] .

  BDNF has emerged as an important factor for the un-
derstanding of memory processing in anxiety disorders 
and depression in humans. BDNF plays a major role in 

the synaptic plasticity associated with learning and mem-
ory  [11] , especially in fear learning and extinction  [12] . 
Anxiety disorders and depression have been associated 
with decreased levels of BDNF  [13, 14]  or BDNF poly-
morphisms  [15, 16] .

  Effects of BDNF on Learning and Memory 

 BDNF was the second member of the neurotrophin 
family of growth factors to be described in the literature 
after the demonstration of its effects in promoting the 
survival of dorsal root ganglion cells  [17] .

  BDNF is well known for its effects on the synaptic plas-
ticity necessary for learning and memory, and new stud-
ies have shown that the differential activation and the role 
of different cascades activated by BDNF in neuronal sur-
vival depend on the cell type and the involvement of path-
ological or physiological stimuli. Through the activation 
of different signaling pathways, BDNF induces rapid ef-
fects on synaptic transmission and membrane excitabili-
ty, acting at both pre- and postsynaptic sites  [18] .

  The role of BDNF in learning and memory was estab-
lished by investigations in   in vivo models. Increased hip-
pocampal BDNF levels have been correlated with better 
performance in the Morris water maze  [19] , and im-
proved performance was observed in hippocampal BDNF 
knockout animals in the object recognition test  [20]  and 
in fear conditioning  [21]  tests.

  These data indicate that the regulation of BDNF activ-
ity might correlate with hippocampal-dependent learn-
ing. Consistent with these studies, it has been demon-
strated that the highest levels of BDNF expression are 
found in the neocortex, hippocampus, striatum, cerebel-
lum, amygdala and prelimbic cortex  [21–24] , all key areas 
for cognitive processing.

  These studies suggest that BDNF has an essential role 
in the consolidation of short- and long-term memories 
(LTM), which has been shown by a wide range of behav-
ioral testing protocols in wild-type animals  [25] . 

  In particular, BDNF/tyrosine kinase (Trk) B signaling 
through the mitogen-activated protein kinase pathway 
has been associated with enhanced excitatory synaptic 
transmission in vivo, as well as with hippocampus-de-
pendent behavior. This provides strong evidence for the 
notion that intracellular signaling cascades involved in 
synaptic plasticity are induced by environmental interac-
tions and influence behavioral learning  [25] . 

  There are two critical periods for LTM formation in 
which BDNF is required: one 1–4 h after information en-
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coding, and this is critical for LTM lasting for 1–2 days, 
whereas the other occurs 12 h after memory formation 
and is important for persistence of LTM 7 days later. Ex-
tinction of previously acquired memories is a new form 
of learning and a potential target of BDNF-mediated plas-
ticity. It has been shown that extinction of conditioned 
fear is accompanied by a significant increase in BDNF 
gene expression, particularly the transcription mediated 
by BDNF promoters I and III in the prefrontal cortex and 
amygdala  [26] . Moreover, extinction of fear-potentiated 
startle was impaired in mice with a site-specific knockout 
of the BDNF gene in the dorsal hippocampus through 
targeted injections of a Cre recombinase lentivirus in 
adult mice floxed at the BDNF locus  [27] .

  Long-term potentiation (LTP) is the most studied form 
of synaptic plasticity and is considered to be a cellular cor-
relate of learning and memory. It is defined as a sustained 
increase in synaptic strength induced by activity. The in-
duction of LTP is associated with activation of a large num-
ber of signaling cascades, including those activated by 
BDNF. At low concentrations, BDNF activates neurons in 
the hippocampus, cortex and cerebellum. Neurotrophin-
induced depolarization resulting in the activation of sodi-
um conductance was reversibly blocked by K-252a, a pro-
tein kinase blocker, which preferentially binds to Trk re-
ceptors  [28] . These data demonstrate that neurotrophins 
elicit a very rapid excitatory action, placing them among 
the most potent endogenous neuro-excitants in the mam-
malian central nervous system. In addition, other studies 
have shown that BDNF not only acts as a modulator of ion 
channels, but can also directly and rapidly gate Na +  chan-
nels, thereby assigning BDNF the property of a classical 
excitatory neurotransmitter  [29] . This was a remarkable 
finding, as before then, only classical neurotransmitters 
were believed to exert rapid effects on the membrane po-
tential of neurons. Substantial evidence has indicated that 
BDNF can cause an immediate and robust induction of 
LTP in the dentate gyrus  [30]  and in CA1 cells  [31] .

  BDNF can modulate fast excitatory transmission by 
increasing the number of vesicles docked at the active 
zone of the synapse, or postsynaptically by altering the 
activation kinetics of N-methyl- D -aspartate receptors 
and increasing the expression of 2-amino-3-(5-methyl-
3-oxo-1,2-oxazol-4-yl)propanoic acid receptors  [18] .

  BDNF and glutamate interact to regulate developmen-
tal and adult neuroplasticity. Glutamate stimulates the 
production of BDNF, which, in turn, modifies neuronal 
glutamate sensitivity, Ca 2+  homeostasis and plasticity 
 [32] . BDNF also modulates inhibitory synapses, a process 
that occurs by the activation of TrkB receptors. Taken to-

gether, all this provides evidence for the concept that ac-
tivity-dependent inhibitory synaptogenesis signaling oc-
curs via the TrkB receptor and that continuous extracel-
lular supply of BDNF is important for the proper 
formation and functional maturation of glutamatergic 
and GABAergic synapses  [33] .

  Thus, BDNF plays an important role in the control and 
regulation of the balance between the activity of excit-
atory and inhibitory synapses to maintain the proper 
functioning of neural networks. In contrast to these rapid 
effects on synaptic transmission and membrane excitabil-
ity, BDNF also mediates slower cellular events. It is well 
established that, like other neurotrophins, BDNF pro-
motes the growth, differentiation, target innervation and 
survival of neurons during development in the central 
and peripheral nervous system  [25, 34] .

  In the adult brain, BDNF promotes the growth of den-
drites through the activation of TrkB receptors  [35] , pre-
vents apoptosis of cells in the hippocampus and cerebel-
lum  [36, 37] , positively regulates hippocampal neurogen-
esis in the subgranular zone of the dentate gyrus  [11, 38]  
and maintains dendritic spines in cortical neurons  [39] .

  The BDNF gene contains four differentially regulated 
promoters that generate four distinct mRNA transcripts, 
each containing a unique noncoding 5 ′ -exon and a com-
mon 3 ′ -coding exon. The diverse BDNF promoters and 
5 ′ -exons exert different functions during the consolida-
tion of learning. The selective increase in BDNF tran-
scripts containing exons I and III was verified in the 
amygdala 2 h following fear conditioning, while mRNA 
levels of BDNF exons II and IV remained unchanged. 
These results provided the first evidence of differential 
splicing and/or differential BDNF promoter usage in re-
sponse to a behaviorally relevant learning paradigm  [40] .

  Thus, BDNF can activate various signaling pathways 
that may act to regulate the necessary effects for synaptic 
plasticity and memory formation. The pathway to be se-
lectively activated is triggered by biological responses that 
are dependent on the expression levels of BDNF and TrkB 
receptors, the temporal pattern of BDNF stimulation, the 
form of BDNF that is released and whether the signaling 
is activated pre- or postsynaptically.

  There are many feedback systems that control BDNF 
activity. Besides being able to increase its own transcrip-
tion through a mechanism mediated by CREB  [41] , for 
example, BDNF can also enhance the expression of TrkB 
receptor on the surface  [42] . Moreover, it can regulate its 
own release  [43, 44] . These properties are likely to con-
tribute to the strengthening and stabilization of synaptic 
connections.
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  However, prolonged exposure to BDNF induces a neg-
ative feedback loop, exhausting TrkB receptors on the 
neuronal surface, resulting in receptor long-term desen-
sitization to BDNF  [45] .

  BDNF Polymorphism in Humans 

 The confirmation of the importance of the regulated 
traffic of BDNF for cognitive function comes from a func-
tional single nucleotide polymorphism (SNP) identified 
in the human BDNF gene, the Val 66 Met  [46] . This SNP is 
the substitution of methionine for valine at position 66 
in the BDNF precursor (pro-BDNF). This BDNF SNP ex-
ists in human populations with an allele frequency of 20–
30% (BDNF Val/Met ), but homozygosity for the Met allele 
(BDNF Met/Met ) is rare in the general population, compris-
ing only 4% of people in Caucasian populations  [47] . 
However, there are significant ethnic differences in the 
BDNF Val 66 Met polymorphism. In the Korean popula-
tion, for example, the most frequent genotype was found 
to be BDNF Val/Met  and they display a similar distribution 
of Met and Val alleles  [48] . The BDNF polymorphism 
may provide a valuable tool to understand how BDNF is 
associated with anatomical and behavioral phenotypes in 
humans and how genetic variations interfere in the devel-
opment of neuropsychiatric disorders.

  Morphological studies showed that in healthy human 
subjects, the met allele is linked with diminished levels of 
hippocampal N-acetyl aspartate, a putative marker of 
neuronal integrity and synaptic abundance  [46, 49] , but 
is not associated with changes in the serotonergic system 
 [50] . In brain structure investigations, a reduction in the 
volume of the hippocampal formation has been observed 
 [51] . In addition, volume reductions in gray matter in the 
cerebral neocortex of healthy Met allele carriers were 
found to be associated with a decreased volume of the 
dorsolateral prefrontal cortex, as well as of subcortical re-
gions such as the caudate nucleus  [52]  and amygdala in 
healthy aged subjects  [53] .

  In relation to behavioral studies, the Met group ex-
hibited deficits in episodic memory  [46] , reduced hip-
pocampal activity during both encoding and retrieval 
processes, as shown by blood oxygenation level-depen-
dent functional MRI responses in the posterior hippo-
campal formation  [54] , as well as impaired extinction 
learning  [15] . Furthermore, healthy subjects with the 
BDNF Val/Met  genotype showed lower mean performance 
IQ in the Object Assembly subtest  [55] . Moreover, the 
BDNF polymorphism attenuated the cognitive benefits 

of exercise in recognition memory in healthy, sedentary 
young adults  [56] .

  The BDNF polymorphism has been associated with 
several neuropsychiatric disorders, such as Alzheimer’s 
disease  [57–59] , schizophrenia  [60, 61] , attention-deficit 
hyperactivity disorder  [62] , bipolar disorder  [63] , suicide 
pathogenesis  [64] , Parkinson’s disease  [65] , risk for affec-
tive disorder  [66] , drug abuse  [67, 68]  and depression 
 [69] . In general, correlations are made between the pa-
thology and the morphological and behavioral features of 
the BDNF polymorphism carriers. However, there are 
also studies that found no relationship between the dis-
ease and the BDNF Val/Met  or BDNF Met/Met  genotype, sug-
gesting that the BDNF polymorphism may not be consid-
ered a predictor but a genetic risk factor for the develop-
ment or worsening of some diseases.

  BDNF Met  Knockin Mice 

 The first study examining the trafficking of BDNF Met  
showed that when it is expressed in hippocampal neu-
rons, less BDNF Met  is secreted in an activity-dependent 
manner  [46] . Subsequently, Chen et al.  [70]  demonstrat-
ed that the Met substitution in the BDNF prodomain im-
paired intracellular trafficking and regulated secretion of 
BDNF in primary cortical neurons, and that the coexpres-
sion of BDNF Val  and BDNF Met  heterodimers resulted in 
less efficient BDNF trafficking into the regulated secre-
tory pathway in neurons. The molecular mechanism un-
derlying defective BDNF Met  function appeared to be at-
tributable not to the form of BDNF secreted but more 
simply to the amount of BDNF released in an activity-
dependent manner.

  The decreased regulated secretion of BDNF may ex-
plain the behavioral deficits observed in humans hetero-
zygous for the relatively common Met polymorphism, 
since the majority of BDNF is released from the regulated 
secretory pathway in neurons.

  To better understand the molecular mechanisms relat-
ed to this BDNF polymorphism, Chen et al.  [71]  generated 
a variant BDNF mouse (BDNF Met/Met ). This BDNF Met/Met  
model reproduces the phenotypic hallmarks of humans 
although comparable levels of BDNF are observed in brain 
lysates in BDNF Val/Met  and BDNF Met/Met  mice and wild-
type controls. Moreover, no difference was found in con-
stitutive secretion from either BDNF Val/Met  or BDNF Met/ Met  
neurons. However, a significant decrease in regulated se-
cretion from both BDNF Val/Met  and BDNF Met/Met  neurons 
represented a significant decrease in available BDNF. 

D
ow

nl
oa

de
d 

by
: 

95
.1

45
.5

9.
42

 - 
6/

24
/2

01
6 

8:
14

:1
5 

PM



 Translational Findings on BDNF and 
Anxiety 

Neuropsychobiology 2013;68:129–138
DOI: 10.1159/000353269

133

A significant decrease in hippocampal volume and in den-
dritic arborization complexity in the dentate gyrus was 
also observed. Finally, in tests that selectively assess hip-
pocampal and amygdala-dependent learning, BDNF Val/ Met  
and BDNF Met/Met  mice showed significantly less context-
dependent memory and exploratory behavior ( fig. 1 ).

  Correlation between the BDNF Polymorphism and 
Anxiety 

 As occurs with other psychiatric disorders, anxiety 
correlates with anatomical changes related to the BDNF 
polymorphism, such as reduction in the volume of the 

hippocampal formation  [72] , impaired survival of newly 
born cells and LTP in the dentate gyrus  [73]  and dysfunc-
tions in the medial prefrontal cortex, as well as in amyg-
daloid and midbrain central gray  [74] . In addition, the 
BDNF polymorphism is believed to be associated with 
responsiveness of the hypothalamic-pituitary-adrenal 
axis to psychological stress characterized by individual 
differences in stress regulation and possibly genetic vul-
nerability to stress-related disorders  [75–78] .

  In animal models, behavioral tests showed that the 
anxious phenotype of BDNF Met/Met  mice relates to de-
creased exploratory behavior, as demonstrated by a re-
duction in the number of entries and in the percentage of 
time spent in the center of the open field arena, and a sig-

  Fig. 1.  The BDNF polymorphism is associ-
ated with different neural features. Al-
though no difference was found in consti-
tutive secretion from neurons of either 
BDNF Val/Met  (right panel) or BDNF Met/Met  
(left panel) mice, a significant decrease in 
regulated secretion from both BDNF Val/Met  
and BDNF Met/Met  neurons represented a 
significant decrease in available BDNF. A 
significant decrease in hippocampal vol-
ume and in dendritic arborization com-
plexity in the dentate gyrus was also ob-
served. Accordingly, both BDNF Val/Met  and 
BDNF Met/Met  mice showed significantly less 
context-dependent memory and explor-
atory behavior in tests that selectively as-
sess hippocampal and amygdala-depen-
dent learning. 
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Table 1.  The BDNF polymorphism in different anxiety disorders and populations

Reference Disorder Association Sample Comments

Lam et al. [82], 2004 PD No 103 patients Analyzed genotype or allele in the Chinese population.

Shimizu et al. [83], 
2005

PD No 109 patients Analyzed genotype or allele in the Japanese population.

Wendland et al. [84], 
2007

OCD No 295 patients The gene variants were no significantly associated with 
comorbid anxiety disorders.

Katerberg et al. [85], 
2009

OCD Yes 419 patients In women with OCD, the BDNFMet/Met genotype was 
associated with later age of onset and a trend for a negative 
family history, whereas the BDNFVal/Val genotype was 
associated with a trend for lower Yale-Brown Obsessive 
Compulsive Scale severity scores. 

da Rocha et al. [86], 
2011

OCD Yes 122 patients Met allele carriers showed impairment in decisions made 
under ambiguous conditions possibly related to the 
dysfunctions of the orbitofrontal cortices that are associated 
with OCD.

Fullana et al. [87], 
2012

OCD Yes 106 patients Genetic variation in BDNF was associated with treatment 
response in exposure-based cognitive behavior therapy. 

Zhang et al. [88], 
2006

PTSD No 96 patients The negative results for PTSD could be due to low statistical 
power.

Valente et al. [89], 
2011

PTSD No 65 patients and 34 
victims of urban 
violence

There was no statistically significant difference between the 
BDNFVal/Met and serotonin transporter polymorphism and 
traumatic phenotype.

Wichers et al. [90], 
2008

Social 
stress

Yes 446 healthy subjects Healthy heterozygous BDNFMet carriers exhibited an 
increased stress-induced negative affect response to social 
stress.

Xie et al. [91], 2011 Phobic 
disorders

Yes 120 patients and 
267 healthy subjects

A significant association between phobic disorders and BDNF 
haplotype was proposed in the Han Chinese population. 

Jiang et al. [92], 2005 Anxiety Yes 153 Met allele 
carriers

Genotyping was performed in US Caucasian, American 
Indian and African American populations. The Met 66 allele 
was associated with increased harm avoidance and was most 
abundant in individuals with both anxiety disorders and 
major depression. 

Gatt et al. [93], 2009 Anxiety Yes 374 subjects European BDNFMet carriers exposed to greater early-life stress 
presented smaller hippocampal and amygdala volumes, heart 
rate elevations, decline in working memory, elevated 
neuroticism and higher depression and anxiety.

Tocchetto et al. [94], 
2011

Anxiety Yes 228 subjects An association between carrying one copy of the Met allele 
and higher chance of anxiety disorders in children and 
adolescents was proposed. 

Hünnerkopf et al. 
[95], 2007

Anxiety 
traits

Yes 272 subjects There was a significant dopamine transporter gene 
variation-dependent association between neuroticism and 
the BDNFVal/ Met polymorphism in healthy volunteers of 
German ethnicity.

Arias et al. [96], 2012 Anxiety 
traits

Yes 553 individuals There was a significant gene-gene interaction on harm 
avoidance between the serotonin transporter gene and the 
BDNFVal/Met polymorphism.

 PD = Panic disorder; OCD = obsessive-compulsive disorder; PTSD = posttraumatic stress disorder.
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nificant decrease in the number of entries and in the per-
centage of time spent in the open arms of the elevated plus 
maze  [71] . Administration of fluoxetine, an antidepres-
sant for which one postulated mechanism of action in-
volves increasing BDNF levels, the BDNF Met/Met  mice 
showed decreased anxiety-related behaviors in the open 
field and in the novelty-induced hypophagia tests. The 
authors report that only the homozygous mice exhibited 
anxiety, and that although a correlation between this an-
imal model and heterozygous individuals cannot be 
made, it can be suggested that genetic, as well as environ-
mental influences, might be required for this SNP to in-
fluence psychiatric pathology  [71, 75] .

  A strong correlation between polymorphisms and 
anxiety has been proposed based on similar changes dem-
onstrated in extinction learning in both mice and hu-
mans. These studies measured brain activity during the 
extinction of a previously conditioned stimulus memory, 
and Met allele carriers showed weaker extinction rates. 
Imaging data showed significantly less ventromedial pre-
frontal cortex (vmPFC) activity and greater amygdala ac-
tivity during extinction in Met allele carriers in compari-
son with non-Met allele carriers. These findings indicate 
that cortical regions previously shown to be essential for 
extinction (vmPFC) in both rodents and humans are hy-
poresponsive in Met allele carriers in relation to non-Met 
allele carriers. Moreover, Met allele carriers showed con-
tinued recruitment of the amygdala, a brain structure ex-
pected to display diminished activity during the extinc-
tion trials of the experiment. A significant decrease in 
vmPFC volume in BDNF Met/Met  mice was shown, and 
no significant differences in taste discrimination in the 
BDNF Met/Met  mice compared to wild-type mice were 
found, with no observable impairments in acquisition or 
retention of conditioned taste aversion  [15, 79] .

  Neurophysiological data that show impaired extinc-
tion learning have also been implicated in anxiety disor-
ders, including phobias and posttraumatic stress disor-
ders  [80] . However, clinical studies conducted so far are 
still controversial, and have not conclusively demonstrat-
ed the association between the polymorphism for BDNF 
and anxiety, as can be noticed in  table 1 .

  The differences in the results on anxiety between the 
BDNF Met  animal model and clinical studies may be due to: 
(1) mice were subjected to conflict tests to elicit the in-
creased anxiety-related behavior, whereas human studies 
relied on questionnaires; (2) the anxiety-related pheno-
type was only present in homozygous mice for the Met al-
lele, which suggested that association studies that focused 
primarily on heterozygous humans for the Met allele may 

not detect the correlation found by Chen et al.  [81] ; (3) ge-
notyping difficulties in humans; (4) small sample size, 
which leads to decreased statistical power; (5) clinical het-
erogeneity, and finally (6) significant ethnic differences.

  Prospects in BDNF Polymorphism Research for 
Anxiety Treatment 

 The BDNF polymorphism research in animals and hu-
mans represents a powerful tool for understanding the 
involvement of BDNF on the pathogenesis of anxiety dis-
orders. In this respect, it is worth noting the observation 
made by many authors that the BDNF genotype along 
with clinical observations, such as those identified by 
neuroimaging techniques, may be useful as biomarkers to 
provide guidance for more customized therapeutic direc-
tions or predict the patients’ responsiveness to treatment. 
However, more clinical studies must be performed on the 
basis of the observations reported in this work. Studies on 
animal models suggest that developing pharmacological 
strategies facilitating the release of BDNF from synapses 
or prolongation of the half-life of secreted BDNF may 
improve the therapeutic responses of humans expressing 
the BDNF polymorphism. 
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